References
Andersen, H., & Hepburn, B. (2016). Scientific method. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Summer 2016). https://plato.stanford.edu/archives/sum2016/entries/scientific-method/; Metaphysics Research Lab, Stanford University.
Announcement: Reducing Our Irreproducibility. (2013). Nature, 496(7446), 398–398. https://doi.org/10.1038/496398a
Boulton, G., Campbell, P., Collins, B., Elias, P., Hall, W., Laurie, G., O’Neill, O., Rawlins, M., Thornton, J., & Vallance, P. (2012). Science as an open enterprise. The Royal Society.
Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees. Psychological Methods, 18(1), 71–86. https://doi.org/10.1037/a0030001
Claerbout, J. F., & Karrenbach, M. (1992). Electronic documents give reproducible research a new meaning. SEG Technical Program Expanded Abstracts 1992, 601–604. https://doi.org/10.1190/1.1822162
Deutsche Forschungsgemeinschaft. (2019). Leitlinien zur Sicherung guter wissenschaftlicher Praxis. https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
Doorn, P., & Tjalsma, H. (2007). Introduction: Archiving research data. Archival Science, 7(1), 1–20.
Epskamp, S. (2019). Reproducibility and replicability in a fast-paced methodological world. Advances in Methods and Practices in Psychological Science, 2(2), 145–155. https://doi.org/https://doi.org/10.1177/2515245919847421
Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The Null Ritual: What You Always Wanted to Know About Significance Testing but Were Afraid to Ask. In D. Kaplan, The SAGE Handbook of Quantitative Methodology for the Social Sciences (pp. 392–409). SAGE Publications, Inc. https://doi.org/10.4135/9781412986311.n21
Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–79. https://doi.org/10.1002/tea.3660280107
Heilbron, J. L. (Ed.). (2004). The Oxford Companion to the History of Modern Science. Reference Reviews, 18(4), 40–41. https://doi.org/10.1108/09504120410535443
Hutson, M. (2018). Artificial intelligence faces reproducibility crisis. Science, 359(6377), 725–726. https://doi.org/10.1126/science.359.6377.725
Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer programs. Nature, 482(7386, 7386), 485–488. https://doi.org/10.1038/nature10836
Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLOS Medicine, 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124
Jacobucci, R., Brandmaier, A. M., & Kievit, R. A. (2019). A Practical Guide to Variable Selection in Structural Equation Modeling by Using Regularized Multiple-Indicators, Multiple-Causes Models. Advances in Methods and Practices in Psychological Science, 2(1), 55–76. https://doi.org/10.1177/2515245919826527
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Kraker, P., Leony, D., Reinhardt, W., Gü, N., & Beham, nter. (2011). The case for an open science in technology enhanced learning. International Journal of Technology Enhanced Learning, 3(6), 643. https://doi.org/10.1504/IJTEL.2011.045454
Maitra, S., Shanker, M., & Mudholkar, P. K. (2011). Disaster recovery planning with virtualization technologies in banking industry. Proceedings of the International Conference & Workshop on Emerging Trends in Technology, 298–299. https://doi.org/10.1145/1980022.1980089
Martin, R. C. (2011). The clean coder: A code of conduct for professional programmers / Robert C. Martin (1. print.). Prentice Hall.
Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? American Psychologist, 70(6), 487.
Meehl, P. E. (1990). Appraising and Amending Theories: The Strategy of Lakatosian Defense and Two Principles that Warrant It. Psychological Inquiry, 1(2), 108–141. https://doi.org/10.1207/s15327965pli0102_1
Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46(4), 806–834. https://doi.org/10.1037/0022-006X.46.4.806
Müller, K. (2017). Here: A simpler way to find your files. https://CRAN.R-project.org/package=here
Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114
Nuijten, M. B., Hartgerink, C. H. J., van Assen, M. A. L. M., Epskamp, S., & Wicherts, J. M. (2016). The prevalence of statistical reporting errors in psychology (1985–2013). Behavior Research Methods, 48(4), 1205–1226. https://doi.org/10.3758/s13428-015-0664-2
Ooms, J. (2019a). Credentials: Tools for managing ssh and git credentials. https://CRAN.R-project.org/package=credentials
Ooms, J. (2019b). Gert: Simple git client for r. https://CRAN.R-project.org/package=gert
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716–aac4716. https://doi.org/10.1126/science.aac4716
Parasuraman, R., & Mouloua, M. (2018). Automation and Human Performance: Theory and Applications. Routledge.
Pashler, H., & Wagenmakers, E. (2012). Editors’ Introduction to the Special Section on Replicability in Psychological Science: A Crisis of Confidence? Perspectives on Psychological Science, 7(6), 528–530. https://doi.org/10.1177/1745691612465253
Peikert, A., & Brandmaier, A. M. (2019). A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and Docker [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/8xzqy
Peikert, A., Brandmaier, A. M., & van Lissa, C. J. (2020). Repro: Automated setup of reproducible workflows and their dependencies. https://github.com/aaronpeikert/repro
Popper, K. R. (1962). Some comments on truth and the growth of knowledge. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, Methodology and Philosophy of Science Proceedings of the 1960 International Congress (Vol. 155). Stanford University Press.
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling: A quiet methodological revolution. American Psychologist, 65(1), 1–12. https://doi.org/10.1037/a0018326
The Linux Foundation. (2017, October 25). 2017 Linux Kernel Report Highlights Developers’ Roles and Accelerating Pace of Change. https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
The Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Herterich, P., Higman, R., Krystalli, A., Morley, A., O’Reilly, M., & Whitaker, K. (2019). The Turing Way: A Handbook for Reproducible Data Science. https://doi.org/10.5281/zenodo.3233986
Tichỳ, P. (1976). Verisimilitude redefined. The British Journal for the Philosophy of Science, 27(1), 25–42.
Van Lissa, C. J., Brandmaier, A. M., Brinkman, L., Lamprecht, A.-L., Peikert, A., Struiksma, M., & Vreede, B. (2020). WORCS: A Workflow for Open Reproducible Code in Science [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/k4wde
Wickham, H., & Bryan, J. (2020). Usethis: Automate package and project setup. https://CRAN.R-project.org/package=usethis
Williams, J. M. (2017). Style: Lessons in clarity and grace (Twelfth Edition). Pearson.
Xie, Y., Allaire, J. J., & Grolemund, G. (2019). R Markdown: The definitive guide.
Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393