
Reproducibility made simple
Automating reproducible research workflows

Aaron Peikert

2020-08-21

Contents

Abstract 3

Acknowledgements 3

1 Theoretical Considerations 5

2 Technical Solutions 9
2.1 File Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Dynamic Document Generation . . . . . . . . . . . . . . . . . . . 11
2.3 Version Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Dependency Management . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Containerisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Working with repro 18
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Discussion 27

References 31

1





Abstract

This thesis discusses the practical and metascientific merits of reproducibility of
scientific workflows and results. I present repro, an R package which simpli-
fies the adherence to the best practices of reproducibility proposed by Peikert &
Brandmaier (2019). The resulting workflow complies with Open Science princi-
ples, is transferable across machines and preserved over time. Research projects
are virtually guaranteed to reproduce and consequently are more comfortable
to replicate. I explained how the technical solutions, namely Git, RMarkdown,
Make, and Docker, overcome common problems of reproducibility and how the
interaction with these tools is simplified through automation. The high degree of
automation allows the workflow to scale well across researchers, letting them col-
laborate more transparently and effectively, as well as across machines, including
high performance and cloud computing technology. To adapt to the ever-shifting
landscape of software requirements repro has a modular design allowing other
packages implementing research workflows to build upon its infrastructure.

Acknowledgements

I dedicate this thesis to my mother, who endured what cannot be described to
give what only can be felt.

I want to thank my advisers, Dr. Andreas M. Brandmaier and Prof. Manuel Völkle
for their time and patience, and my friends for their resourceful advice:

• Jakob Eißner (commits bc53e58, 9841a36 & 4857dcb)
• Elisabeth Riha (commit 82f32d4)
• Caroline Gahrmann (commit d9a730c)
• Andreas Brandmaier (commit 9207348)

3

https://github.com/aaronpeikert/repro
https://github.com/aaronpeikert/repro
https://github.com/aaronpeikert/repro-thesis/commit/bc53e58cf1861b4dbc4447853ad7f3895dd805ea
https://github.com/aaronpeikert/repro-thesis/commit/9841a3695b9bc607b95e06e3d30b45116c6681ab
https://github.com/aaronpeikert/repro-thesis/commit/4857dcb8536136efa63bbe5efb2da6ae6fc10681
https://github.com/aaronpeikert/repro-thesis/commit/82f32d4d15dd3014dc0cf847166e0b023ea11a8a
https://github.com/aaronpeikert/repro-thesis/commit/d9a730cb1bdcedef3312bc2be32ad81a3d2a45b9
https://github.com/aaronpeikert/repro-thesis/commit/9207348f06a56d58637ced8636ad1e0005eb3e14




1 Theoretical Considerations

Claerbout & Karrenbach (1992) define reproducibility as the ability to obtain the
same results, from the same dataset. Conversely, they call a result replicable if
one draws the same conclusion from a new dataset. This thesis is concerned with
the former goal, providing researchers with an accessible yet modular workflow,
that is virtually guaranteed to reproduce across time and computers.

The scientific community agrees that ideally, their work should be reproducible.
Indeed it may be hard to find a researcher who distrusts a result because it is
reproducible; to the contrary, many argue it is “good scientific practice” to en-
sure what they consider reproducible (“Reducing Our Irreproducibility,” 2013;
Deutsche Forschungsgemeinschaft, 2019; Epskamp, 2019). Several reasons, prac-
tical and meta-scientific, justify this consensus of reproducibility as a minimal
standard of Science.

Reproducibility makes researchers life more productive in two ways: The act of
reproduction provides, at the most basic level, an opportunity for the researcher
to spot errors. At the same time, other researchers may also benefit from reusing
materials from an analysis they reproduced.

Beyond these two purely pragmatic reasons, reproduction is crucial, depending
on the philosophical view of Science one subscribes to, because it allows indepen-
dent validation and enables replication. Philosophers of Science characterise Sci-
ence mainly as a shared method of determining whether or not a statement about
the world is “true” (Andersen & Hepburn, 2016) or more broadly evaluating the
statements verisimilitude (Gilbert, 1991; Meehl, 1990; Popper, 1962; Tichỳ, 1976).
If this method is for experts to agree on the assumptions and deduce “truth”, re-
producibility is hardly necessary. On the other hand, it does gain importance if
one induces facts by carefully observing the world. The decisive difference be-
tween the above approaches is that the former gains credibility by the authority
of the experts, while the latter is trustworthy because anyone may empirically
verify it.

Accepting induction as a scientific method hence hinges on the verifiability by
others. Some have even argued that such democratisation of Science is what fu-
eled the so-called scientific revolution (Heilbron, 2004, Scientific Revolution). The
scientific revolution had the experiment as an agreed-uponmethod to observe re-
ality, and a much later revolution provided statistical modelling (Rodgers, 2010)
as a means to induction. This consensus about how to observe and how to induce
builds the foundation of modern empirical Science. Two reasons justify why we
must assume reproducibility as a scientific standard if we accept induction as a

5



scientific method: First, it allows independent verification of the process of in-
duction, and second, it enables replication as a means to verify the induced truths.

However, neither verification of the induction nor the induces results are strictly
enabled by the definition of reproducibility provided by Claerbout & Karrenbach
(1992) given above. A simple thought experiment illustrates this shortcoming:
Imagine a binary—therefore only machine-readable—program being perfectly re-
producible; hence upon the input of the same dataset, it completes a scientific
manuscript with the identical numbers at the right places. Furthermore, let us
assume this hypothetical program may never hold if the dataset changes. Does
the predicate “reproducible” in this situation reduce the number of mistakes or
enables reuse? Unlikely. Or could one audit it and use it in replication? Hardly.
This admittedly constructed case of a reproducible black box shows that we are
not interested in reproducibility per se but rather in its secondary effects. Be-
cause it is a binary program, it does not enhance understanding and because it
does not apply to other datasets, it does not facilitate productivity. In fact, such a
program does not grant the researcher any practical or metascientific advantages
over non-reproducible research products.

Spoiling its elegant simplicity, I, therefore, extend the definition by Claerbout &
Karrenbach (1992) to address this issue, by further demanding that reproducibility
must allow criticism and facilitate replication:

A reproducible scientific product allows one to obtain the same re-
sults from the same dataset in a way that enables substantive criti-
cism and therefore facilitates replication.

Thus, transparency should enable reproducibility: Ensuring a clear link between
the data and its results, promotes both replicability and reproducibility. Com-
prehension is a necessary precondition to form substantive criticism, which mo-
tivates the iterative scientific process. Bowing to this general notion, scientific
publications are required to provide enough detail about the research process so
that others may contribute constructive criticism. I am convinced that we should
accept the same standard for everything that is published — including code.

Consequently, something is no longer either reproducible or not, but there are
shades because a research product can promote replication and comprehension
to varying degrees. Also note that a scientific result can facilitate replication
without anyone ever attempting to replicate it, e.g. by educating other researchers
about the method of analyses, being openly accessible and providing reusable
components.

6



Hence, reproducibility has a technical aspect, which is ensuring identical re-
sults, and a non-technical side, which is facilitating understanding and progress
through cumulative Science. The former relates to the practical advantages while
the latter serves the metascientific purposes of reproducibility. An important
caveat of the technical aspect is that generating the same results from the same
data should always be possible regardless of time and computer. As such, a re-
producible analysis should be:

1. understandable by other researchers,
2. transferable across computers,
3. preserved over time.

This extended notion and demanding standard of reproducibility is justified by
two recent developments in the social sciences in general and psychology in par-
ticular: the emergence of a “replication crises” (Ioannidis, 2005) and the rise of
“machine learning” (Jordan & Mitchell, 2015) as a scientific tool. Both trends link
to the use of statistical modelling on which the social sciences became reliant for
testing and developing their theories (Gigerenzer et al., 2004; Meehl, 1978). It
turns out that, if one fits the very same statistical model as published on newly
gathered data, one fails more often to achieve results that are consistent with
what was published, than one succeeds. (Open Science Collaboration, 2015).

Such failure to replicate findings that were believed to be robust has grown to
a level that some social scientists call a crisis (Pashler & Wagenmakers, 2012).
They put forth various causes and remedies to this crisis. Most remedies share
a common motif: transparency. Some call for Bayesian statistics (Maxwell et al.,
2015), as it makes assumptions more explicit, or demand preregistration (Nosek et
al., 2018) as a means to clarify how to analyse the data, before data was collected.
Others require the researchers to publish their data (Boulton et al., 2012). Similar
calls for transparency, as a response to the replication crises, have formed the
open science movement which stresses the necessity of six principles (Kraker et
al., 2011):

• Open Access,
• Open Data,
• Open Source,
• Open Methodology,
• Open Peer Review and
• Open Educational Resources.

I argue that a research product resting on the first four pillars facilitates replica-
tion optimally and hence, it satisfies the highest standard of reproducibility. The

7



last two pillars are then consequences of reproducibility. If everyone has access
to a scientific product and its data along with the source code, everyone has the
possibility of understanding the underlying methodology, which enables them to
criticise the results and educate themselves. Having done so, they are in the best
position for replication. Hence, any one’s ability to reproduce such a result gives
a tangible affirmation of its usefulness to the scientific community.

While establishing reproducibility is no hurdle if one can perform the calculations
needed with a pocket calculator, the more and more frequent use of computer-
intensive methods renders such expectation questionable. The use of machine
learning techniques, which has been once enabled by the computer taking over
strenuous works like estimating and comparing thousands of models, now im-
pedes our quest for reproducibility. More massive amounts of more complicated
computer code than ever before, create room for errors and misunderstandings,
leading the machine learning community to believe that they face a reproducibil-
ity crisis themselves (Hutson, 2018). At the same time, machine learning becomes
more and more popular ins psychological research (Brandmaier et al., 2013; Ja-
cobucci et al., 2019; Yarkoni & Westfall, 2017). Therefore, I am far from calling
for abstinence from machine learning, just because it complicates reproduction,
but want to emphasise the need for solutions that allow anyone in any field to
reproduce even the most sophisticated analysis. Such possibility enables commu-
tative Science and allows the researcher to build a more complete and accurate
understanding of the fields subject matter.

Peikert & Brandmaier (2019) put forth an analysis workflow which provides this
convenience for everyone to reproduce any kind of analysis. However, they fail
to provide the same level of convenience for the researcher who created an analy-
sis in the first place. Setting up the workflow eats up a considerable amount of the
researcher’s time because it requires a level of technical sophistication that can-
not be expected across all disciplines. This time should researchers rather spend
on advancing research. This additional effort offsets the increase in productivity,
promised by reproducibility, which I regard as most significant in the workflows
adoption. Persuading researchers, who find the meta-scientific argumentation
noble but impractical, do not care about it or even oppose it, requires concrete,
practical benefits. Luckily, most of this setup process may become automated,
letting the researcher enjoy the workflows advantages while decreasing the ef-
forts necessary to achieve them. Providing a version of the analysis workflow by
Peikert & Brandmaier (2019) that is easier to use and more accessible is the goal
of this thesis and the herein presented repro-package for the R programming
language (Peikert et al., 2020).

8



2 Technical Solutions

This section summarises the workflow proposed by Peikert & Brandmaier (2019;
see also The Turing Way Community et al., 2019 for a similar approach). They
argue that publicly sharing code and materials is not sufficient to ensure repro-
ducibility: Instead, reproducibility has to rest on five pillars:

1. file management a folder containing all files, referring to each other us-
ing relative paths

2. literate programming a central dynamic document, that relates code to
thought

3. version control a system in place that manages revisions of all files over
time

4. dependency management a formal description of how files relate to
each other

5. containerisation an exact specification of the computational environ-
ment

These pillars stipulate the relations between thought, code and data with their
change over time and environment and hence, they reach all requirements of
reproducibility through being:

1. understandable to other researchers,
2. transferable across machines,
3. preserved over time.

While comprehensibility to the scientific community is probably the most crucial
objective, it is also the most difficult to achieve. That is because as a non-technical
requirement, no set of rules can assure its fulfilment (though clear writing1 and
clean code2 certainly help). Transfer and conservation, on the other hand, are
problems with technical solutions.

Peikert & Brandmaier (2019) propose to use a combination of RMarkdown, Git,
Make, and Docker, for users of the R programming language (R Core Team, 2020)
and provide the high-level overview which can be seen in Figure 1.

However, they stress that any combination of tools is suitable as long as it facili-
tates the above pillars.

1Williams (2017) provides some excellent principles for writing clearly.
2Martin (2011) proposes a coding paradigm that found widespread use because of its focus on

understandability.

9



time

Git
tracks

versions

data/

iris.csv

prepped/
...

...

raw/

iris.csv

LICENSE.md
DockerfileDockerfile
Makefile
manuscript.pdf

R/
manuscript.Rmd

...

...
prepare_data.R

reproducible.Rproj
.git/
.gitignore

Docker
software

environment

some
Software

Virtual Linux

Operating System

LaTex

Packages

R Version

Make

B depends on A

A B
=

manuscript.pdf

Some text.

Petal.Length

Pe
ta

l.W
id

th

RMarkdown
dynamic document

generation

Figure 1: Overview of the interplay of RMarkdown, Git, Make, and Docker (Peik-
ert & Brandmaier, 2019).

Each of the following sections first raises a challenge for reproducibility, then
outlines a conceptual remedy along with a concrete tool and concludes how they
relate to the package repro. The relation of these tools with repro is then
expanded in the next chapter.

2.1 File Organisation

File organisation has to meet two challenges: First, the structure needs to be
understandable for others, and second, it needs to be self-contained so that it can
be moved to another machine.

Adhering to conventions can help other people understand how files are organ-
ised. For example, the filename R/reshape.R both follows standard naming
conventions (i.e. all lowercase; ends with .R; placed within the R directory) and is
meaningful. Contrarily, myScripts/munge_Data.r is probably a lot harder
both to understand and to remember for most R-users.

Following two guidelines makes the file structure self-contained:

1. Everything is in one folder.
2. Every path is relative to that folder.

10



This simple concept of a self-contained folder is facilitated by two R specific tools:
RStudio projects and the here package (Müller, 2017). The former exempt the
user from changing the working directory manually; the latter infers absolute
paths from relative ones. However, unlike the native R solution, this inference is
consistent across operating systems, scripts and RMarkdowns.

The repro package offers a template for an RStudio Project, which sets up a
file structure that follows best practices and conventions. This template provides
the researcher with a minimal example of a reproducible analysis. It enables re-
searchers to learn by easy to understand examples, e.g. how files should refer
to each other. Such learning by example complements the abstract arguments
for best practices with a more hands-on perspective. The researcher can thus
adapt code and files to their need, either by merely changing them manually or
by the modular structure of repro. Furthermore, does this template provide a
reference for researchers that is more concise than any tutorial and connects the
concept of file structure, with the ideas of the following sections.

2.2 Dynamic Document Generation

A clear file structure helps researchers to understand better how a scientific result
relates to the code, but the otherwise strict segregation of code and document
may obscure how both connect, e.g. which parts of code generate which results.
Providing a direct link, dynamic document generation allows interspersing text
with code and its results, in order to produce a human-readable document. The
key feature is that every time such a document is rerun, the results are reproduced
dynamically. This functionality eliminates errors due to copy and paste results
from statistical software to a text processor. This mistake happens far too often;
Nuijten et al. (2016) reports that 50% of papers from the psychological sciences
contain at least one error that could have been prevented.

RMarkdown provides a convenient framework to write such dynamic documents
and render them as a wide range of output formats3. In an RMarkdown, three
parts can be distinguished:

• one specifying its output and metadata,
• one containing code, and
• one with descriptive text.

Each part uses its own language, all of them designed with ease of use and read-
ability in mind. The one section containing the output format and other metadata

3The document you are viewing also results from a collection of RMarkdowns available as
website, PDF and E-book

11

https://r4ds.had.co.nz/workflow-projects.html
https://github.com/aaronpeikert/repro-thesis
https://aaronpeikert.github.io/repro-thesis/
https://aaronpeikert.github.io/repro-thesis/ma.pdf
https://aaronpeikert.github.io/repro-thesis/ma.epub


alongside is written in YAML (recursive acronym for “YAML Ain’t Markup Lan-
guage”, see the example below). This specification is located on the top, separated
by three dashes at the beginning and the end of the section. (R-)Code executing
an analysis can be placed in a distinct chunk or inline within the text. The former
has three backticks on their own line signifying beginning and end. The latter
is quoted in a pair single backticks. Examples of both methods can be found be-
low. Text which is not fenced by either three dashes or backticks is interpreted
as literal text written in the Markup language “Markdown”. Markdown allows
annotating text to signify formatting like bold, italic, links and the inclusion of
images. This markup is designed to be well readable even as source files.

The following section shows examples of metadata, code and text, specified as
above described, forming a minimal example of an RMarkdown (adapted source
code from Xie et al. (2019)/CC BY-NC-SA 4.0):
---
title: ”Hello R Markdown”
author: ”Ross Ihaka & Robert Gentleman”
date: ”1997-04-23”
output: pdf_document
---

This is a paragraph in an R Markdown document.

Below is a code chunk:

‘‘‘{r}
fit = lm(dist ~ speed, data = cars)
b = coef(fit)
plot(cars)
abline(fit)
‘‘‘

The slope of the regression is ‘r b[1]‘.

Resulting in the rendered document seen in Figure 2:

Undeniably, RMarkdown facilitates reproducibility greatly, but it cannot ensure
reproduction. To virtually guarantee reproduction, the repro package extends
the YAML metadata to incorporate Dependency Management and Containerisa-
tion into the process of dynamic document creation. It, therefore, extends the
existing metadata model of RMarkdown to capture all dependencies of the analy-
sis and ensures reproduction. Becausemany researchers are already familiar with
RMarkdown this solution provides minimal cognitive overhead. However, even
though the metadata relates to a single document, repro compiles all needed in-

12

https://github.com/rstudio/rmarkdown-book/blob/a10b33d47a2b223a8ef643c245d45e4dfc7091b8/02-basics.Rmd#L15-L39
https://github.com/rstudio/rmarkdown-book/blob/a10b33d47a2b223a8ef643c245d45e4dfc7091b8/02-basics.Rmd#L15-L39
https://creativecommons.org/licenses/by-nc-sa/4.0/


“rmarkdown” — 2020/8/16 — 14:30 — page 1 — #1

Hello R Markdown

Ross Ihaka & Robert Gentleman

1997-04-23

This is a paragraph in an R Markdown document. Below is a code chunk:
fit = lm(dist ~ speed, data = cars)
b = coef(fit)
plot(cars)
abline(fit)

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

The slope of the regression is -17.5790949.

1
Figure 2: Result of minimal RMarkdown example.

13



formation from all documents across the project into suitable Docker- and Make-
files.

2.3 Version Control

Text, code and results of a scientific document are typically modified in cycles of
many revisions. As changes accumulate, different versions do so as well, posing
a problem for reproducibility as it may be challenging to find out which version
of code relates to the final product. One may argue that in the typical publication
process, the final product is apparent: the published paper. However, repro-
ducibility may be crucial even before publication as part of the collaboration and
within the peer-review process. Also, recent trends in the publication process as
preprints, open review, registered reports and post-publication review, blur the
lines between published and unpublished.

To organise different versions as changes accumulate across the phases of
a project across machines and users is a well-known challenge in software
development. This challenge is met by a high degree of automation that keeps
track of different versions and has advanced facilities to compare and merge
them.

One such version control software is Git. Git tracks versions of a project folder by
taking snapshots of a given state called commits. Each commit has a unique ID,
called a hash, as well as a short description of the changes made, called commit
message and a link to the previous commit. This linking procedure creates a
“pedigree” of versions that makes it easy to see how things have evolved. Going
back in time to a specific version only requires knowing the hash of the commit.
Tomark commits as special milestones, they can be tagged, e.g. as preregistration,
preprint, submission or publication.

While mastering Git requires some experience, most of the time, only four com-
mands are needed, all of which can be accessed through RStudio’s Git interface:

git add take a snapshot of the given file
git commit create a commit of all added files
git push upload recent commits to a server
git pull download and integrate recent commits from the server

While a few other commands are necessary to set up Git in a given project direc-
tory, this work is done by the repro-package. In my experience, Git is over-
whelming to learn because users have to interact with it through a terminal.
While R users have some experience with interactive programs that can only

14



be accessed through written commands (e.g. R itself), Git follows—from the per-
spective of R users—strange and archaic syntactical rules. Thanks to usethis
and indirectly through credentials (Ooms, 2019a) and gert (Ooms, 2019b)
users can use most of Git through R commands. Because repro has the same
interface as usethis the cognitive overhead is kept as low as possible.

2.4 Dependency Management

In a scientific analysis of empirical data, the statistical or computational results
depend on code which in turn depends on data. However, rarely the data is anal-
ysed as it is, but some code is dedicated to preparing it (e.g. removing outliers,
reshaping, aggregating, artefact correction etc.). Most likely, each analysis needs
a slightly different version of the data. An analysis of missingness requires the
missings to be retained, but some statistical models do not allow that. Or the
modelling software requires data to be differently shaped, then the plotting li-
brary. Often it is the case that one analysis is based on the output of another and
so forth. As these relations can become quite complicated, it is necessary to make
them explicit to avoid confusion. Dependency management provides a formalism
that describes how files depend on other files. More specifically, it provides an
automated way to create files from other files, e.g. it automatically generates a
cleaned version of the data, by relying on a cleaning script and the raw data.

Such relations may be layered; hence, if a plot requires this cleaned dataset, first
the cleaned dataset and then the plot is generated automatically. Such structure
allows to save considerable computing time, as dependencies are not generated
again if they already exist, but only if one of their dependencies has changed. In
this example, upon recreation of the plot, the cleaned dataset is not generated as
long as the cleaning script and the raw data remain unchanged. Such intelligent
behaviour is most useful when the preprocessing requires a lot of computing time
as is typical in neuroimaging or machine learning.

Make is a tool for dependency management. While originally designed for the
compilation of programs, it is now increasingly recognised as a tool for ensuring
reproducibility. It allows for all features mentioned above and even more as it a
full-fledged programming language.

The repro package provides a simplified interface to the essential features of
Make, eschewing the need to learn yet another language while leveraging its
most important feature: “dependency management” for scientific data analyses.
Similarly to Git Make uses an interface that is quite different from the way R
is used. Because Make doesn’t have to be used interactively, repro reuses the

15



interface of RMarkdown to interact with Make. Users hence need only to learn
RMarkdown and gain the ability to use Make (and as described in the next section
Docker) if they use repro.

2.5 Containerisation

Most computer code is not self-contained but depends on libraries and other soft-
ware to work (e.g. the R programming language or packages). These external
dependencies pose a risk for reproducibility because it may not be clear what is
necessary—besides the code and data—and how to install it. Even when all re-
quired software and their exact versions are recorded meticulously, it may be a
challenge to install them on a different system. First, it is difficult to maintain
different software versions on the same computer, and second, it may be unclear
how to obtain an exact copy a specific software version. Setting up a computer
exactly as someone else’s is difficult enough, but replicating another computers
state from several years ago is at best painstaking, if not impossible.

To overcome this challenge, the software environment of a project needs sepa-
ration from the rest of the software environment. Technically such separation
is called virtualisation because one software environment is hosted on another.
Such virtual environment allows each project to have its own software environ-
ment without interfering with each other. Hence, such setup is ideal for conser-
vation and can easily be recreated on another machine.

Docker allows virtualisation of the whole software stack down to the operat-
ing system, but in a much more lightweight way than traditional virtual ma-
chines. This lightweight but comprehensive virtualisation is called containeri-
sation. Containers save storage by being based on each other, enabling reuse.
Hence, one container is based on another, e.g. two containers with the same R
version share the storage for everything but the different R packages. Containers
are created from a plain specification called Dockerfile. This file defines on
which container the result should be based upon and what software should be
installed within it.

The repro-package automatically infers which packages are needed and creates
an appropriate Dockerfiles and the container from it. This process relies on the
same syntax as is employed forMake, so that users do not have to differentiate be-
tween file and software dependencies. E.g. for this project the repro-generated
Dockerfile looks like this:

FROM rocker/verse:3.6.3
ARG BUILD_DATE=2020-07-16

16



WORKDIR /home/rstudio
RUN MRAN=https://mran.microsoft.com/snapshot/${BUILD_DATE} \

&& echo MRAN=$MRAN >> /etc/environment \
&& export MRAN=$MRAN \
&& echo ”options(repos = c(CRAN=’$MRAN’), download.file.method = ’libcurl’)”\
>> /usr/local/lib/R/etc/Rprofile.site

RUN install2.r --error --skipinstalled \
bookdown \
devtools \
gert \
here \
usethis

RUN installGithub.r \
aaronpeikert/repro@adb5fa56

Furthermore, does repro provide the infrastructure that connects Make and
Docker, e.g. it adds appropriateMake target for the container’s image, and tunnels
the otherMake targets through the container. This results in a specialMakefile for
the Docker-related instruction that is incoporated in the main Makefile e.g. like
this:

### Docker Options ###
# --user indicates which user to emulate
# -v which directory on the host should be accessable in the container
# the last argument is the name of the container which is the project name
DFLAGS = --rm $(DUSER) -v $(DDIR):$(DHOME) $(PROJECT)
DCMD = run
DHOME = /home/rstudio/

# docker for windows needs a pretty unusual path specification
# which needs to be specified *manually*
ifeq ($(WINDOWS),TRUE)
ifndef WINDIR
$(error WINDIR is not set)
endif

DDIR := $(WINDIR)
# is meant to be empty
UID :=
DUSER :=

else
DDIR := $(CURDIR)
UID = $(shell id -u)
DUSER = --user $(UID)

endif

### Docker Command ###

17



ifeq ($(DOCKER),TRUE)
DRUN := docker $(DCMD) $(DFLAGS)
WORKDIR := $(DHOME)

endif

### Docker Image ###

docker: build
build: Dockerfile

docker build -t $(PROJECT) .
rebuild:

docker build --no-cache -t $(PROJECT) .
save-docker: $(PROJECT).tar.gz
$(PROJECT).tar.gz:

docker save $(PROJECT):latest | gzip > $@

3 Working with repro

The repro package is designed to streamline the researchers’ workflow. It helps
researchers to set up, create, reproduce and change an analysis with little more
than a simple mental model. To that end, it stands on the shoulders of giants
and provides only a minimal layer of abstraction for the tools as mentioned ear-
lier. While there is a considerable variety in how researchers can approach an
empirical study and its analysis, Figure 3 offers an idealized workflow.

This workflow can be approached from two perspectives, that of an author of a
reproducible analysis or as a contributor. I use the term contributor in its broadest
possible meaning, because—in my view—even a reader who is thorough enough
to reproduce an analysis contributes something of value. Consequently, I include
everyone with interest in reproducing the analysis in the group of collaborators,
be it a coauthor, a reviewer or the very person who created the analysis at an
earlier point in time.

From the contributor’s point of view repro acts as an assistance system, advis-
ing users on how to set up their computers and how to reproduce an analysis. It
is a major difficulty for untrained users to detect their systems state accurately
and act correspondingly (Parasuraman & Mouloua, 2018, Chapter 8: “Automa-
tion and Situation Awareness”). repro parses complex technical information
and straightforwardly presents them. It, therefore, enables even relatively inex-
perienced users to make use of tools which otherwise would require extensive
training. From the perspective of the author who creates an analysis, repro is
a toolbox which provides the right tools for most of the user’s requirements. In
the creation phase, the benefit for inexperienced users is even more accentuated.

18



Setup

Reproduction

Software}Check
Install
Configure

Create project
Preregister
Add data
Add analysis

Download project
Rerun analysis
Verify results

Creation
as author

as contributor

Change
Compile

Commit

Publish

Figure 3: Schematic illustration of a reproducible workflow.

Following the standards of Peikert & Brandmaier (2019) usually requires expe-
rience in the use of Bash, Make, Docker, YAML, (R-)Markdown, R, Latex, knitr,
and Git. Besides some practice, users need to be aware, remember, and correctly
implement best practices in each tool. repro significantly lowers this threshold.
repro still expects the user to have some training in the use of R, (R-)Markdown,
and Git—which is increasingly recognized as a standard in the Open Science and
R community—but forgoes training in Make and Docker. An essential guideline
in designing repro was to make best practices more accessible to implement
than their alternatives. Where possible repro allows the user to forget about
the details of the often tricky implementation and abstracts them away.

The structure of this chapter mirrors the workflow in Figure 3, first from the
perspective of a contributor, then from the perspective of a creator. It explains
step by step how to:

1. Set up the required software;

19



2. reproduce an analysis that follows the here outlined standards;
3. apply and publish changes;
4. create a reproducible workflow from scratch.

repro supports several alternative software implementations for each step and
integrates them into one coherent workflow. This modular structure is inspired
by the usethis-package (Wickham & Bryan, 2020). The steps described here fol-
low the recommendations of Peikert & Brandmaier (2019), and hence combine
RMarkdown, Git & GitHub, Make and Docker.

3.1 Setup

Reproduction, change, and creation of an analysis require the user to have soft-
ware installed that is specific to the workflow they choose, but independent of
the analysis. A set of functions (following the pattern check_*, for a complete
list see help(check)) assists users to ensure that everything they need is in-
stalled and correctly configured. If repro detects that something is not installed
or configured, it guides users through a step by step procedure on how to resolve
these issues in accordance with their specific software platform. Currently, it
supports all major operating systems (Windows, OS X, Linux).

First users have to install repro. The following code snippet installs repro
from GitHub:

# check if remotes is installed, if not install it
if (!requireNamespace(”remotes”)){

install.packages(”remotes”)
}
# install repro
# ”package::function” means to use a function
# without loading the whole package
remotes::install_github(”aaronpeikert/repro”)

If repro is installed one may load it via:

library(”repro”)

Subsequently, users can check if the required software is already installed. The
workflow by Peikert & Brandmaier (2019) depends on Git (and GitHub), Make,
and Docker. Consequently, the following commands check if the user has set up
all the requirements:

check_git()

> v Git is installed, don’t worry.

20

https://usethis.r-lib.org
https://github.com/aaronpeikert/repro


check_make()

> v Make is installed, don’t worry.

check_docker()

> v You are inside a Docker containter!

# check_github() renders this document irreproducible
# because it relies on user settings unavailable in the container
# hence it is not evaluated
check_github()

If everything is set up, users can proceed to reproduce an analysis that conforms
to this workflow.

If not, e.g. because Docker is not installed, users get an informative message ap-
propriate for their platform (the following code chunk shows the message win-
dows users get when Git is missing).

check_git()

> x Git is not installed.

> i We recommend Chocolately for Windows users.

> x Chocolately is not installed.

> * To install it, follow directions on:
> ’https://chocolatey.org/docs/installation’

> i Use an administrator terminal to install chocolately.

> * Restart your computer.

> * Run ‘choco install -y git‘ in an admin terminal to install Git.

3.2 Reproduction

This thesis was written according to the proposed standards using repro and
may serve as an example of reproduction. I also provide a minimal example that
contains a data analysis in the Creation section below.

GitHub, Make, and Docker are sufficient to reproduce this very document. So if
you followed the steps above, everything is set up to download the source files of
this document, rerun the code within it, and verify its results.

The following command uses Git and GitHub to:

1. create a copy of the project, called “fork”, in your GitHub account;

21



2. download this copy to your computer, and
3. verify that all files are intact and open them in a new RStudio instance.

usethis::create_from_github(”aaronpeikert/repro-thesis”,
tempdir(),
fork = TRUE)

If executed, this code opens a new R session, and therefore, all code from here on
out needs to run in the new session.

It is tempting to automate the reproduction part entirely and use a rerun()
function that figures out what to do and does so for you. However, I decided the
reproduction must be feasible without the repro package to avoid monopoliza-
tion of reproducibility by a single software package. This decision is supposed
to ensure that long term reproducibility does not depend on the availability of
the package. I am confident that Git, Make, Docker will be available for years to
come, whereas I cannot say the same about this package. To balance the needs of
long term support and usability, repro offers advice about what to do, but stops
right before doing it (you can see an example after the next code chunk).

Which steps one has to take, depends on the tools chosen to implement depen-
dency management. This tool determines the “entry point” for an analysis. To
detect the entry point, repro follows simple heuristics, which are informed by
what most R users tend to use. These conventions are quite ambiguous, but the
most explicit entry point is a Makefile. If no Makefile is available, the al-
ternatives are either a central dynamic document (RMarkdown, Jupityer Note-
book) or a primary script (R, Python, Oktave, Shell). In these cases, one can only
guess from filenames like manuscript.Rmd, analysis.Rmd, paper.Rmd,
run.R or analysis.R.

To recreate this document you have to follow the steps below:

# because this is a new R project / session, reload repro
library(”repro”)
rerun(cache = FALSE)

> * To reproduce this project, run the following code in a terminal:

> make docker &&
> make -B DOCKER=TRUE

The argument cache = FALSE ensures that everything that can be recreated
is recreated even when nothing was changed.

It is challenging to verify wether an analysis was reproduced. As a minimum
standard one could demand, that the analysis is rerun free of errors or, as a maxi-

22



mal standard, that the resulting documents are exactly the same. Neither solution
strikes the right balance because error-free does not imply the same results. At
the same time, the comparison of binary files often leads to spurious differences,
e.g. because of numerical instabilities.

Currently, researchers need to revert to manual checking and common sense to
verify a successful reproduction. An automated verification procedure would re-
quire the researcher to state which results need to be identical explicitly. Then a
software solution could track changes for only these digital objects and accord-
ingly flag mismatches.

3.3 Change

For a researcher, reproducing an analysis and verifying its results, is often only
a first step to make intentional changes. How researchers contribute to a project
lays strictly outside the realm of reproducibility, but warrants discussion because
easy collaboration is one of the most significant practical advantages of repro-
ducibility. That the primary beneficiary of this advantage is the researcher col-
laborating with its past self is a pun in the open science community that bears
some truth. However, the workflow of an external researcher contributing is
more complicated and hence here described. It is quite a challenge to collaborate
under the circumstances where people do not work side by side or even know
each other. The core challenge is to allow the original creator full control over
changes without burdening them too much. This problem confronted the open
software community from its very beginning, and they came up with the follow-
ing solution. A contributor first creates a public copy, makes and tracks changes
to it and then asks the original owner to incorporate the changes. In the termi-
nology of GitHub, the public copy is a “fork”, the tracked changes are “commits”,
and the call for including the changes is a “pull request”.

Working with pull requests is easy, thanks to the usethis package. If you
reproduced this document, you could make changes to it—which could be some-
thing trivial, like correcting spelling—and ask me to incorporate them. You can
initialize a pull request with:

usethis::pr_init()

Subsequently, you may change the files of this thesis as you like and track them
with Git. You should make sure that the analysis is still reproducible with:

rerun(cache = TRUE)

> * To reproduce this project, run the following code in a terminal:

23



> make docker &&
> make DOCKER=TRUE

If you are satisfied with the changes you made, you can trigger the pull request
with:

usethis::pr_push()

If I—as the author of this document—would like to accept, I can incorporate the
changes on GitHub. If not, the changes can be discussed in the pull request, or I
could make amends before merging them.

Such a distributed workflow allows for a much more controlled way of collabo-
ration as opposed to mailing back and forth or using cloud storage systems. This
higher level of control matches the high standards of scientific work. However,
evenmore important is that this kind of collaboration scales well for many collab-
orators (Git was originally developed for the collaboration on the Linux kernel,
where as of 2017 more than 15.000 developers contributed code (The Linux Foun-
dation, 2017)). Empirical studies require a lot of work, which is usually distributed
on many shoulders. As the authors carry the responsibility for the overall cor-
rectness, they ought to vet every single contribution.

Affirming the correctness of a contribution can be partly automated by confirm-
ing successful reproduction. Such automatic checks of changes are part of a soft-
ware developing process, called continuous integration. Continuous integration
runs code in cloud computing environments that asserts the correctness when
changes are pushed to GitHub. In many ways, continuous integration is the log-
ical next step for reproducible workflows. Because much effort was already in-
vested in ensuring reproducibility across computers, it is easy to move the anal-
ysis to a continuous integration tool.

Hence, if you created a pull request, the continuous integration tool GitHub ac-
tions, will rebuild this document, affirming reproducibility and let me see the
results of your changes.

3.4 Creation

Reproducing an analysis and creating a reproducible analysis are two very differ-
ent issues. The repro packages main strength lies in simplifying the creation.
First, the repro package comes along with a minimal, but comprehensive tem-
plate including an example RMarkdown, R-script and data. This template can be
accessed from within RStudio © via “File” → “New Project” → “New Directory”
→ “Example repro template”, or from any R console via:

24



use_repro_template(”path/to/new/project/”)

repro infers the dependencies to data and external code as well as the required
packages from the yaml metadata of the RMarkdowns. Because analytic data
projects have a particular structure, this markup can be much simpler than writ-
ing Dockerfiles and Makefiles manually. While Docker allows installing
arbitrary software, an analysis in R likely needs nothing but R-packages. Simi-
larly, Make enables you to run any software, but an analysis in R only needs to
execute R-Scripts and render RMarkdowns.

Hence, a minimal addition to the metadata, as can be seen in the following exam-
ple, contains everything necessary to infer a complete Dockerfile and Make-
file:
repro:

packages:
- usethis
- fs
- aaronpeikert/repro@d09def75df

scripts:
- R/clean.R

data:
mycars: data/mtcars.csv

From this specification, the function automate() creates a Dockerfile and
a Makefile, which comply with all recommendations by Peikert & Brandmaier
(2019). Strictly speaking, it creates four Dockerfiles and three Makefiles. Most
of the files are created in the .repro directory and then assembled into the
main Dockerfile/Makefile at top-level. One Dockerfile contains the
base docker image, including the R version and the current date and another
Dockerfile contains only the R packages. It also produces one file where
the user can amend software installation or set up steps that are not covered
by repro. The Makefiles are similarly separated, with one file dedicated
to RMarkdowns and another one for the required logic that executes the make
commands in the container.

The automate() function is designed to simplify the workflow proposed by
Peikert & Brandmaier (2019) as much as possible. Such simplification means in-
evitably to restrict the user’s freedom. While they can still do everything they
want in the realm of Make and Docker, this approach does not allow other re-
producibility software to be used. Users, which need more control and are more
advanced, could instead rely on the modular nature of repro. Each component
can be added to the project by the use_* functions. E.g. use_make() adds a

25



basicMakefile oruse_make_singularity() adds aMakefile that is com-
patible with Singularity (which is an alternative to Docker for High-Performance
Computing). These functions extend the usethis-package (Wickham & Bryan,
2020), which was originally designed to facilitate package development with spe-
cific reproducibility tools.

3.5 Summary

To summarise, if you want to create a reproducible project, you can do so with
the following code:

3.5.1 Install repro package

if (!requireNamespace(”remotes”)){
install.packages(”remotes”)

}
remotes::install_github(”aaronpeikert/repro”)
library(”repro”)

3.5.2 Check required reproducibility software

check_git()
check_github()
check_make()
check_docker()

3.5.3 Configure Project

Either from template in new folder:

use_repro_template(”path/to/new/folder”)
automate()

Or semi automatic with more flexibility in already existing projects:

use_docker() # create Dockerfile
use_make_docker() # create docker compatible Makefile
usethis::use_git() # initialize git and add first commit
rmarkdown::draft(”pnas_article”, # use PNAS article template

package = ”rticles”) # requires rticles package

26

https://usethis.r-lib.org


4 Discussion

This thesis started with a discussion about what functionality reproduction pro-
vides for research. I have argued there that the metascientific advantage is to
easily validate and repeat the induction process, and the practical benefit is to
increase productivity. I then showed how tools and principles from software en-
gineering ensure reproducibility and presented repro a package for the R pro-
gramming language that simplifies their use.

However, I have not focused on its function to archive scientific products, which is
sometimes viewed as the traditional functionality of reproducibility. How likely
is it that an analysis created with repro is still reproducible after decades? A
valid point of criticism is that this workflow introduces a bulk of software solu-
tions and services that may not be available for long. Superficially it relies on R,
RStudio, Pandoc, Git, Make, Docker, Homebrew (OS X only) and Chocolaty (Win-
dows only) as software and on GitHub, DockerHub, MRAN and Ubuntu Package
Archive as services. However, this list of dependencies boils down to one service
and one software. That is because all required software is bundled into the con-
tainer, whose image can be stored. Hence, one needs a storage provider which
saves the container image and the other files associated with the project. This
problem of longterm storage for scientific data is widely recognised and because
of the limited requirements—a typical project (except data) needs around one gi-
gabyte of storage—there are several solutions available (Doorn & Tjalsma, 2007).
When storage availability is guaranteed prettymuch all long term reproducibility
rests on the continued support of container software. Tomy knowledge, there are
at least four different software solutions that can run the here proposed docker
images natively (Docker, CoreOS rkt, Mesos Containerizer, Singularity). This di-
versity in possible solutions makes long term support more likely. Docker itself
also prioritises backwards compatibility.4 However, when long term support is of
primary interest, one can convert the docker image to a raw disk image and also
archive this. Such strategy opens two possibilities. First, such images are sup-
ported by all standard virtualisation software. Such reliance on platform virtual-
isation is standard practice in disaster recovery plans of technical infrastructure
(Maitra et al., 2011) and should hence be available for some time to come. Second,
such raw disk images can be directly installed on the hardware, without virtual-
isation layer. Hence, as long as there is hardware available, that is compatible
with the current x64 architecture, this solution still allows reproducibility5.

4The docker image of this project can be executed with the first stable release of Docker from
October 16, 2014.

5TheRAM limit drove the change from x32 to x64 architecture. x32 has an addressablememory
of 4 GiB (1 Gigabyte = bit), while x64 has an addressable memory of 16 EiB (1 Exabyte =

27



The usage of containers to recreate the computational environment relies on the
assumption that all required software can be indeed installedwithin the container.
This assumption holds for most open-source software and is straight forward to
implement for all software available in the Ubuntu Package Archive. However,
even when there is no technical hurdle for commercial software, there might be a
legal hurdle imposed by the license agreement. There is an ongoing debate about
how compatible commercial closed software is with Open Science in general and
reproducibility in particular (Ince et al., 2012), but, e.g. for Matlab, there are three
different models for hybrid approaches: First, Mathworks provides a possibility
for reusing the host’s Matlab license within the container. Second, the MATLAB
Coder program allows the cross-compilation ofMatlab code to C/C++ and thus its
inclusion in open source code. Third, the MATLAB Compiler can compile code
to a binary that may be run within the container. Hopefully, similar solutions
emerge for other research software with restrictive licenses.

The here presented workflow aspires to an ideal of full transparency, but may in
practice require some compromises. A prime example of this are the ethical and
legal considerations of publishing data that can only with great difficulty be de-
identified. While there are several technical possibilities for this problem, they
may require more time and skill than a researcher is willing to invest. The same
holds for many other problems that are either field or even project-specific. While
such problems are beyond the scope of this thesis, I hope that future research
concentrates on field-specific reproducibility problems and their solution, e.g. for
longitudinal or neuroimaging data.

These general limitations of the workflow are coupled with some repro specific
restrictions. The most challenging problem with repro is the tradeoff between
flexibility and usability. On the one hand, a wide range of possible user require-
ments call for much freedom and flexibility, but on the other hand, this might
be overwhelming for some users. A significant difficulty in this context is the
unintended flexibility users get because I decided to keep explicit specification
to an absolute minimum. Hence, repro needs to infer the current state of the
user’s project and computer. But because users have unlimited freedom to design
a project as they like, it is clear that repro can not cover all possibilities. To pre-
vent errors, it is at the moment advisable to start with the provided template and
customise it. As repro majors and is applied in more use-cases, it will become
more flexible concerning the user’s setup. Till then defensive programming tech-
niques were employed to detect and friendly report such problems.

bit). Even when the time has come that computer architecture that is compatible with x64 is
not available anymore, it is to be expected that this architecture can be emulated with platform
virtualisation similarly to the current support of x32 on x64 only computers.

28



Although the repro package exports 35 well-documented functions, assures
their correctness by close to 200 unit tests and amasses all in all short of 2000 lines
of code, many workflows and features are incomplete. I hope to make progress
in three areas:

1. Building an infrastructure for other workflows,
2. explore “continues integration” (CI) for research projects, and
3. enable the leverage of high-performance computing (HPC) clusters and

cloud infrastructure.

Because the user interface of repro was modelled after the usethis package,
repro also inherited usethis’ modular structure. This design decision was
made more by accident than by intention but is in hindside more than useful.
Because of its modularity, repro can be extended easily and can serve as an
infrastructure package. This use-case will be explored in collaboration with Cas-
par van Lissa, who proposes a workflow, called worcs (Van Lissa et al., 2020),
which is similar in spirit, but uses different tools. worcs also utilises RMark-
down and Git, but in place of Docker, it uses renv and instead of Make it re-
lies on a highly standardised file structure. Hence, only two “moduls” or rather
functions have to be added to repro to support the workflow, use_renv()
(which replaces use_docker()) and use_worcs_template() (which re-
places use_repro_template()). Also, worcs has other features like auto-
matic codebook creation and synthetic data generation, which may be excellent
supplements for a repro project. To ensure interoperability between the pack-
ages, it is planned that much of the backend is moved from worcs to repro in
a more modular form. However, the users will not notice much of a difference,
except that they may fuse both workflows into one.

Such a Lego system of reproducibility tools, where the users can decide which
tools they want to include may be especially useful when some features are not
strictly necessary for reproducibility. In its current form, no tool is optional in the
sense that only in unison they guarantee reproducibility. However, some features
may be useful but not necessary for reproducibility. For example, is it useful to
have an online service such as GitHub Actions that asserts reproducibility of each
change, but it is by no means necessary. As previously discussed there currently
exists no easy solution to verify reproduction automatically. The key difficulty is
to detect changes in the results that potentially alter the conclusion, from those
which carry no meaning, e.g. if the date is updated. To address this challenge,
I currently work on a prototype of an R package, which allows the researcher
to assert that some objects remain unchanged upon reproduction, by wrapping
them into unchanged(). This package keeps track of thus marked objects and

29

https://cjvanlissa.github.io/worcs/
https://cjvanlissa.github.io/worcs/
https://rstudio.github.io/renv/articles/renv.html
https://cjvanlissa.github.io/worcs/
https://cjvanlissa.github.io/worcs/


throws an error if they accidentally change. If such a solution existed, therewould
be no hurdle to incorporate continues integration into research projects. Con-
tinues integration could vet all contributions automatically before they are in-
corporated and update the results, e.g. the preprint or the additional material on
osf.org. Then projects could have a badge that signifies that a third party is able to
reproduce it. Such continues updates do not only ease collaboration but are also
especially interesting for some continues data sources, e.g. long-running devel-
opmental studies or meta-analysis, where new data becomes repeatedly available
even after publication.

Conveniences such as the above are possible because the here presented concep-
tion of reproducibility is highly automated. Hence, an analysis may be moved
to another computer without manual intervention. This functionality also opens
some exciting possibilities unrelated to reproducibility, concerning the manage-
ment of computational resources. It is often the case that an analysis requires
substantial amounts of computational resources, more than a single computer
may deliver. In such a case, a here described analysis can easily be moved to a
more powerful computer or even spread across hundreds. The use of contain-
ers is the de facto standard of cloud computing providers but also becomes in-
creasingly common for high-performance clusters. Hence it is a task that can
easily be accomplished with repro. However, these functions are still in devel-
opment and not tested well enough to be published. A typical problem, when
utilising distributed computation, is the division of tasks between the comput-
ing instances. However, this is pretty straightforward because of the deployed
dependency management. Make can distribute tasks across thousands of nodes
while making sure that none of the dependencies collide. Initially, this function-
ality was available in repro for TORQUE, an HPC task scheduler, but because
TORQUE will no longer be maintained I will phase out this set of functions.

repro strives to make reproducibility more attractive by lowering the barriers to
advanced reproducibility tools. To my knowledge, no standard is as comprehen-
sive as the here described combination of Git, RMarkdown, Make and Docker.
Despite these efforts to make reproducibility easier, I think it is worthwhile to
simplify the approaches further, to appeal to users that are more comfortable us-
ing Microsoft Office than RMarkdown and hesitant to use a formal version con-
trol system. Hopefully, repro is the first step to make reproducibility easier to
achieve.

30

osf.org


References

Andersen, H., & Hepburn, B. (2016). Scientific method. In E. N. Zalta (Ed.), The
stanford encyclopedia of philosophy (Summer 2016). https://plato.stanford.edu/
archives/sum2016/entries/scientific-method/; Metaphysics Research Lab, Stan-
ford University.

Announcement: Reducing Our Irreproducibility. (2013). Nature, 496(7446), 398–
398. https://doi.org/10.1038/496398a

Boulton, G., Campbell, P., Collins, B., Elias, P., Hall, W., Laurie, G., O’Neill, O.,
Rawlins, M., Thornton, J., & Vallance, P. (2012). Science as an open enterprise.
The Royal Society.

Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013).
Structural equation model trees. Psychological Methods, 18(1), 71–86. https://doi.
org/10.1037/a0030001

Claerbout, J. F., & Karrenbach, M. (1992). Electronic documents give reproducible
research a new meaning. SEG Technical Program Expanded Abstracts 1992, 601–
604. https://doi.org/10.1190/1.1822162

Deutsche Forschungsgemeinschaft. (2019). Leitlinien zur Sicherung guter wis-
senschaftlicher Praxis. https://www.dfg.de/download/pdf/foerderung/rechtliche_
rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf

Doorn, P., & Tjalsma, H. (2007). Introduction: Archiving research data. Archival
Science, 7 (1), 1–20.

Epskamp, S. (2019). Reproducibility and replicability in a fast-paced methodolog-
ical world. Advances in Methods and Practices in Psychological Science, 2(2), 145–
155. https://doi.org/https://doi.org/10.1177/2515245919847421

Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The Null Ritual: What You Al-
ways Wanted to Know About Significance Testing but Were Afraid to Ask. In D.
Kaplan, The SAGE Handbook of Quantitative Methodology for the Social Sciences
(pp. 392–409). SAGE Publications, Inc. https://doi.org/10.4135/9781412986311.
n21

Gilbert, S. W. (1991). Model building and a definition of science. Journal of Re-
search in Science Teaching, 28(1), 73–79. https://doi.org/10.1002/tea.3660280107

Heilbron, J. L. (Ed.). (2004). The Oxford Companion to the History of Modern Sci-
ence. Reference Reviews, 18(4), 40–41. https://doi.org/10.1108/09504120410535443

31

https://plato.stanford.edu/archives/sum2016/entries/scientific-method/
https://plato.stanford.edu/archives/sum2016/entries/scientific-method/
https://doi.org/10.1038/496398a
https://doi.org/10.1037/a0030001
https://doi.org/10.1037/a0030001
https://doi.org/10.1190/1.1822162
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://doi.org/https://doi.org/10.1177/2515245919847421
https://doi.org/10.4135/9781412986311.n21
https://doi.org/10.4135/9781412986311.n21
https://doi.org/10.1002/tea.3660280107
https://doi.org/10.1108/09504120410535443


Hutson, M. (2018). Artificial intelligence faces reproducibility crisis. Science,
359(6377), 725–726. https://doi.org/10.1126/science.359.6377.725

Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer
programs. Nature, 482(7386, 7386), 485–488. https://doi.org/10.1038/nature10836

Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLOS
Medicine, 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124

Jacobucci, R., Brandmaier, A. M., & Kievit, R. A. (2019). A Practical Guide to Vari-
able Selection in Structural Equation Modeling by Using Regularized Multiple-
Indicators, Multiple-Causes Models. Advances in Methods and Practices in Psy-
chological Science, 2(1), 55–76. https://doi.org/10.1177/2515245919826527

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives,
and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.
aaa8415

Kraker, P., Leony, D., Reinhardt, W., Gü, N., & Beham, nter. (2011). The case for
an open science in technology enhanced learning. International Journal of Tech-
nology Enhanced Learning, 3(6), 643. https://doi.org/10.1504/IJTEL.2011.045454

Maitra, S., Shanker, M., & Mudholkar, P. K. (2011). Disaster recovery planning
with virtualization technologies in banking industry. Proceedings of the Interna-
tional Conference & Workshop on Emerging Trends in Technology, 298–299. https:
//doi.org/10.1145/1980022.1980089

Martin, R. C. (2011). The clean coder: A code of conduct for professional program-
mers / Robert C. Martin (1. print.). Prentice Hall.

Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from
a replication crisis? What does “failure to replicate” really mean? American Psy-
chologist, 70(6), 487.

Meehl, P. E. (1990). Appraising and Amending Theories: The Strategy of
Lakatosian Defense and Two Principles that Warrant It. Psychological Inquiry,
1(2), 108–141. https://doi.org/10.1207/s15327965pli0102_1

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald,
and the slow progress of soft psychology. Journal of Consulting and Clinical Psy-
chology, 46(4), 806–834. https://doi.org/10.1037/0022-006X.46.4.806

Müller, K. (2017). Here: A simpler way to find your files. https://CRAN.R-project.
org/package=here

32

https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1038/nature10836
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1177/2515245919826527
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1504/IJTEL.2011.045454
https://doi.org/10.1145/1980022.1980089
https://doi.org/10.1145/1980022.1980089
https://doi.org/10.1207/s15327965pli0102_1
https://doi.org/10.1037/0022-006X.46.4.806
https://CRAN.R-project.org/package=here
https://CRAN.R-project.org/package=here


Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The pre-
registration revolution. Proceedings of the National Academy of Sciences, 115(11),
2600–2606. https://doi.org/10.1073/pnas.1708274114

Nuijten, M. B., Hartgerink, C. H. J., van Assen, M. A. L. M., Epskamp, S., &
Wicherts, J. M. (2016). The prevalence of statistical reporting errors in psychol-
ogy (1985–2013). Behavior Research Methods, 48(4), 1205–1226. https://doi.org/
10.3758/s13428-015-0664-2

Ooms, J. (2019a). Credentials: Tools for managing ssh and git credentials. https:
//CRAN.R-project.org/package=credentials

Ooms, J. (2019b). Gert: Simple git client for r. https://CRAN.R-project.org/
package=gert

Open Science Collaboration. (2015). Estimating the reproducibility of psycholog-
ical science. Science, 349(6251), aac4716–aac4716. https://doi.org/10.1126/science.
aac4716

Parasuraman, R., & Mouloua, M. (2018). Automation and Human Performance:
Theory and Applications. Routledge.

Pashler, H., & Wagenmakers, E. (2012). Editors’ Introduction to the
Special Section on Replicability in Psychological Science: A Crisis of
Confidence? Perspectives on Psychological Science, 7 (6), 528–530. https:
//doi.org/10.1177/1745691612465253

Peikert, A., & Brandmaier, A. M. (2019). A Reproducible Data Analysis Workflow
with R Markdown, Git, Make, and Docker [Preprint]. PsyArXiv. https://doi.org/
10.31234/osf.io/8xzqy

Peikert, A., Brandmaier, A. M., & van Lissa, C. J. (2020). Repro: Automated setup of
reproducible workflows and their dependencies. https://github.com/aaronpeikert/
repro

Popper, K. R. (1962). Some comments on truth and the growth of knowledge. In
E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, Methodology and Philosophy of Sci-
ence Proceedings of the 1960 International Congress (Vol. 155). Stanford University
Press.

R Core Team. (2020). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. https://www.R-project.org/

Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling:
A quiet methodological revolution. American Psychologist, 65(1), 1–12. https:

33

https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.3758/s13428-015-0664-2
https://doi.org/10.3758/s13428-015-0664-2
https://CRAN.R-project.org/package=credentials
https://CRAN.R-project.org/package=credentials
https://CRAN.R-project.org/package=gert
https://CRAN.R-project.org/package=gert
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1177/1745691612465253
https://doi.org/10.1177/1745691612465253
https://doi.org/10.31234/osf.io/8xzqy
https://doi.org/10.31234/osf.io/8xzqy
https://github.com/aaronpeikert/repro
https://github.com/aaronpeikert/repro
https://www.R-project.org/
https://doi.org/10.1037/a0018326
https://doi.org/10.1037/a0018326


//doi.org/10.1037/a0018326

The Linux Foundation. (2017, October 25). 2017 Linux Kernel Report Highlights
Developers’ Roles and Accelerating Pace of Change. https://www.linuxfoundation.
org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-
accelerating-pace-change/

The Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Herterich, P.,
Higman, R., Krystalli, A., Morley, A., O’Reilly, M., & Whitaker, K. (2019). The
Turing Way: A Handbook for Reproducible Data Science. https://doi.org/10.5281/
zenodo.3233986

Tichỳ, P. (1976). Verisimilitude redefined. The British Journal for the Philosophy
of Science, 27 (1), 25–42.

Van Lissa, C. J., Brandmaier, A. M., Brinkman, L., Lamprecht, A.-L., Peikert, A.,
Struiksma, M., & Vreede, B. (2020). WORCS: A Workflow for Open Reproducible
Code in Science [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/k4wde

Wickham, H., & Bryan, J. (2020). Usethis: Automate package and project setup.
https://CRAN.R-project.org/package=usethis

Williams, J. M. (2017). Style: Lessons in clarity and grace (Twelfth Edition). Pear-
son.

Xie, Y., Allaire, J. J., & Grolemund, G. (2019). R Markdown: The definitive guide.

Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psy-
chology: Lessons From Machine Learning. Perspectives on Psychological Science,
12(6), 1100–1122. https://doi.org/10.1177/1745691617693393

34

https://doi.org/10.1037/a0018326
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://doi.org/10.5281/zenodo.3233986
https://doi.org/10.5281/zenodo.3233986
https://doi.org/10.31234/osf.io/k4wde
https://CRAN.R-project.org/package=usethis
https://doi.org/10.1177/1745691617693393

	Abstract
	Acknowledgements
	Theoretical Considerations
	Technical Solutions
	File Organisation
	Dynamic Document Generation
	Version Control
	Dependency Management
	Containerisation

	Working with repro
	Setup
	Reproduction
	Change
	Creation
	Summary

	Discussion
	References

